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Fig 3.39—The response of two crystal
filters built from 3.58-MHz color burst
crystals. One uses ideal crystals with
zero CO to produce a symmetrical
shape. The other (with dashed line)
uses C0=4 pF crystals.

solid curve is the response we would
like, designed with ideal crystals with zero
parallel capacitance. C,=4 pF produces the
other response. The filter bandwidth is too
narrow and the attenuation is markedly in-
creased. [t1s for this reason that this circuit
is named the lower sideband ladder filter.

Response distortion results because the
parallel C;, makes the series resonators
behave as if they had a larger motional L
than is measured. This effect is plotted in
Fig 3.40 for the 5-MHz crystalsused in the
earlier CW filter design. The lower curve
shows the effect of a 2-pF parallel capaci-
tance while the upper curve is for C; =
5 pF. Here, X is theratioof L yto L. The
horizontal axis in the curve is 8F. the oft-
set from the series resonant frequency.
These effects were discussed in greater
detail in QFEX for Jume, 1995, where
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Fig 3.40—X, defined as L 4/L,,, is ploited for frequency offset, &f, above crystal
series resonance in Hz. These 5-MHz crystals had parallel C of 2 and 5 pF.

C-trim C-trim

C-trim Cetrim

Fig 3.41—Experimental crystal filter.

¥1,2,3,4 = 3.58-MHz surplus color burst crystals. (L =0.117H, Cy=4 pF)
L = 151 pH, 48 turns #30 on FT-50-61 Ferrite toroid.(Amidon)

C-trim = 3-12 pF ceramic trimmer. See the r
procedure.

eferenced QEX paper for adjustment
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detailed design equations are given. The
corrections related to the effective induc-
tance are included in the program
XLAD.exe. Both the program and the 1995
QEX paper are included on the book CD.

The effective inductance 1s larger than
the normal motional L. by a factor of 2 or
more. This reduces the efTective motional
capacitance by the same lactor. Accord-
ingly. the coupling capacitors must be
reduced by the same factor. The change
also alters the calculation ot end resis-
tance. The new lerminations and reduced
coupling capacitors will then alter the fil-
ter tuning.

One can build symmetric filters if the
effect of parallel capacitance is climinated.
One way to do this parallels each crystal
with a large inductance. The valuc
required is one that resonates with Cp,
forming a parallel trap that is then bridged
by the series resenant portion of the crys-
tal. An experimental filter was built to
examine this idea. The inductance used
was smaller than required for resonance,
so small trimmer capacitors were added.
The filter, built with 3.58-MHz color burst
crystals for a 3.5-kHz bandwidth. is shown
in Fig 3.41. The measured response is pre-
sented in Fig 3.42.

Crystal filters built with paralleled in-
ductors suffer from degraded stopband
response. Although the performance
around the filter center is as designed. it
degrades a few hundred kHz away from
center, necessitating the crystal filter be
supplemented with an LC bandpass.

The Min-Loss Filter of
Cohn and other
Simplified Forms

A simplified non-mathemaltical scheme
for building crystal filters uses the Min-
Loss circuit. This circuit is the result of
tundamental work by S. B. Cohn where he
described a family of coupled resonator
filters that achieved very low insertion loss
while maintaining good stopband attenua-
tion.'® A really interesting property of
these filters was the lact that they used
identical resonators that were coupled to
cach other with cqual values of coupling.
This means that all shunt coupling capaci-
tors in a Min-Loss crystal filter are equal.
If the filters are designed without shunt
end loading capacitors. tuning is greatly
simplified. A Min-Loss type crystal filter
is properly tuned if

e all crystals have the same frequency,

= all coupling capacilors are of the same
value, C.

e series capacitors having the same capaci-
tance as the coupling C are placed in series
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Butterworth Crystal Filter, 3.58 MHz
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Fig 3.42—Measured
response for the
filter shown in

Fig 3.41.

A three element
crystal filter at 10
MHz. The metal
can crystals have
small wires
soldered to them
that are then
grounded to the
foil.

Three experimental
crystal filters. The
top circuit uses 10
crystals in a circuit
with equal coupling
between resonators
(Cohn). The bottom
filter is that from
Fig 3.41.

Fig 3.43—Min-Loss
type crystal filter
with equal coupling
and simplified
tuning.

with both end crystals
» both terminations are equal and properly
related to coupling,

A crystal filter of this type, with five
resonators, is shown in Fig 3.43.17

This filter topology often appears with
the name “Cohn Filter,” titled for the
original circuit theorist who contributed
so extensively to our design methods.
Other filters have also appeared with the
Cohn name. Here we have divorced the
name from this simple crystal filter, for it
is but one example from Cohn's body of
work, a collection that is much richer and
more extensive than has been presented in
the amateur literature.

While most of the Min-Loss crystal fil-
ters we build are fabricated without design
(i.e., without any mathematical analysis),
they may certainly be studied and designed
on the computer. The normalized coupling
coelflicients and end section Q for this fil-
ter type arc approximately given by

Ln (2)

1
kjk = 5 - eXp N Eq 3.16

l
R T ta 3.17
kjk Eq 3.1

where n is the number of resonators. These
values are tabulated for » from 2 to 10 in
Table 3.5. (The first few points appeared
in the original Cohn paper, while & and ¢
tor N>5 are extrapolations via our above
equations.)

Shown in Fig 3.44A are transfer func-
tion plots for two different filters of this
type. The wider, lower loss one has 3 reso-
nators while the other has 8 crystals. Both
circuits were designed for 5 MHz with a
500-Hz bandwidth using high Q crystals
with L =0.098 H. Part A of the figure
shows close-in details while Fig 3.44B
shows the response to the —80 dB level.
Part C of the figure shows the group delay
for the filter with 8 resonators. (More will
be said about group delay shortly.) All
three plots are computer generated re-

Table 3.5

N K q

2 0.707 1.414
3 0.63 1.587
4 0.585  1.683
5 0.574 1.741
6 0.561 1.782
7 0.552 1.811
8 0.545 1.834
9 0.54 1.852
10 0.536 1.866




sponses, although they are in good agree-
ment with measurements on similar filters.
We have built Min-Loss crystal [ilters up
1o 10th order.

The data of Fig 3.44 illustrate the
salient properties of the Cohn filter. The
passband shape is smooth with minimal
ripple for the low order filters (N=3). but
becomes distorted as the number of reso-
nator grows beyond five. The ripples on
the passband edges near the skirts become
extreme with wider bandwidth filters. The
N=8 data of Fig 3.44B illustrate the excel-
lent shape afforded by the Min-Loss filter.
However, the time domain performance as
depicted in the group delay plot suggests
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Fig 3.44—Min-Loss crystal filter
responses. A and B compare 3rd and
8th order filters in responses to —20 and
—80 dB. C shows the group delay for the
8th order filter.

that this filter may have severe ringing if
built for narrow (CW) bandwidths.

Although the two filters (N=3 and N=8§)
described in Fig 3.44 have dilferent
responses, they are remarkably similar
in component values. The N=3 filter used
146-pF capacitors and 181-£2 terminations
while the 'N=8 filter used 168 pF
and 155 Q. A filter designed with two or
three crystals can be extended with the
same capacitor values and terminations.
This becomes extremely useful for the
experimenter.,

The Min-Loss crystal filter has virtucs
of low insertion loss and good skirts. but at
the price of poor passband shape with
higher orders. Some other filters offer
similar non-mathematical simplicity and
better passband performance, with a group
of crystals all at the same frequency. Fig
3.45 shows such a filter. This design is a
Butterworth design at 10 MHz with nor-
malized parameters of ¢=0.765. K=
ky,=0.841, and k,,=0.541. This [lilter is
designed with a pure resistive termination
at the ends (no shunt end capacitors.) The
equations predict the end resistance and
the shunt capacitors. The series tuning ca-
pacitors are yet to be established. How-
ever, the values are clear from inspection.
If the end capacitors are set to the value of
the center capacitor (85 pF.) each mesh
has the same capacitors in the related loop.

Design with the equations does not take
the parallel crystal capacitance effects into
account. This is done with curves like
those of Fig 3.40 that establish an
increased etfective inductance value that
can then be applied with the equations.
Approximate designs without the curves
will still result in practical flilters al
the higher frequencies (8 MHz and up)
although the bandwidth will be a bit nar-
rower than the design values.

Ringing, Group Delay
and Filter Passbhand
Shape

All serious receiver experimenters have
their favorite cfforts, receivers with speci-
fications differing litule from others, but
with a “crisp sound™ that sets them apart

from the ordinary. There are numerous
phenomenon that tend to degraded perfor-
mance and remove “crispness.” One that
can ruin an otherwise excellent receiver is
an IF filter with excessive group delay. All
filters have time delay, a truth that cannot
be avoided. The filters that “sound™ the
best are those that have small delay for a
given bandwidth and. of greater import,
behave like a transmission line with little
variationin group delay over the passband.

The group delay of an cighth order Min-
Loss filter was presented in Fig 3.44C. The
delay was high, exceeding 10 milliseconds
in part of the passband. The group delay
variation over the passband was also
severe, This filter, although very selective,
would probably not sound good, espe-
cially with noise pulses.

Two 5-MHz filters were designed for a
bandwidth of 500 Hz. cach with five
crystals. One filter used a 0.1-dB ripple
Chebyshev response while the other used a
linear phase response. The Chebyshev re-
sults are shown in Fig 3.46 while the linear
phase response is given in Fig 3.47. Both
plots overlay group delay and gain. The
“cars” of the Chebyshev group delay plot
line up with the 3-dB edges of the pass-
band, so all delay variations arc heard. In
contrast, the region of low group delay in
the linear phase filter extends well beyond
the filter bandwidth edges. Both of these
filters have been built and tricd in an
experimental CW receiver, The linear
phase filter was more difficult to build, but
sounded much better. The skirts were steep
in the Chebyshev, so it presented adequate
selectivity. We found the linear phase filter
in need of more skirt selectivity. Although
not shown in the figures, the Chebysheyv
filter group delay was 2.5 times as large as
the linear phase filter delay.

We have also had good results with an
intermediate filter shape, the Gaussian-
to-6 dB response. This is a filter with a
rounded peak shape for the top 6 dB. but
with steep Chebyshev-like skirts. Transi-
tional filters (Gaussian-to-6 dB, Gaussian-
to-12 dB, lincar phase, and maximum flat
delay) are slightly more difficult to build
than the Min-Loss, Butterworth., or
Chebyshev filters, tor they lack the sym-

Fig 3.45—10-MHz SSB bandwidth filter using crystals with identical frequencies
and “easy’” tuning. This filter has a Butterworth shape; the simplified tuning
method often works well with N=4 Chebyshev filters.
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